

SmartElex DPS310 - Precision Barometric Pressure Altitude

Sensor

The DPS310 sensor from Infineon a high precision barometric sensor, perfect for
measuring altitude changes with a up to ±0.002 hPa (or ±0.02 m) precision high
precision mode and ± 1 hPa absolute accuracy. That means you can know your
absolute altitude with 1 meter accuracy when you set the sea-level pressure, and
measure changes in altitude with up to 2 cm precision. This makes it a great sensor
for use in drones or other altitude-sensitive robots. This sensor would also do well
in any environmental sensing kit, you can use it to predict weather system changes

You can use this sensor with either I2C or SPI, so it's easy to integrate into projects.
It also has a temperature sensor built in, with ± 0.5°C accuracy. For the lowest noise
readings, set it up to take multiple measurements and perform a low-pass filter,
that capability is built in! You can use it from 300 to 1200 hPa and in ambient
temperature ranges from -40 to 85 °C.

Pinouts

Power Pins

• Vin - this is the power pin. Since the sensor chip uses 3 VDC, we have
included a voltage regulator on board that will take 3-5VDC and safely
convert it down. To power the board, give it the same power as the logic level
of your microcontroller - e.g. for a 5V microcontroller like Arduino, use 5V

• 3Vo - this is the 3.3V output from the voltage regulator, you can grab up to
100mA from this if you like

• GND - common ground for power and logic

I2C Logic Pins:

• SCK - This is also the I2C clock pin SCL, connect to your microcontroller's I2C
clock line. This pin is level shifted so you can use 3-5V logic, and there's a 10K
pullup on this pin.

• SDI - This is also the I2C data pin SDA, connect to your microcontroller's I2C
data line. This pin is level shifted so you can use 3-5V logic, and there's a 10K
pullup on this pin.

• SDO - This is also the I2C address pin ADR. Pulling this pin low to GND or
bridging the solder jumper on the back will change the I2C address
from 0x77 to 0x76

SPI Logic pins:

All pins going into the breakout have level shifting circuitry to make them 3-5V logic
level safe. Use whatever logic level is on Vin!

• SCK - The SPI Clock pin, it's an input to the chip
• SDO - The Serial Data Out / Microcontroller In Sensor Out, for data sent from

the DPS310 to your processor.
• SDI - The Serial Data In / Microcontroller Out Sensor In pin, for data sent

from your processor to the DPS310
• CS - The Chip Select pin, drop it low to start an SPI transaction. Its an input to

the chip

If you want to connect multiple DPS310's to one microcontroller, have them share
the SDI, SDO and SCK pins. Then assign each one a unique CS pin.

I2C Wiring
Use this wiring if you want to connect via I2C interface

By default, the I2C address is 0x77. If you add a jumper from DDO to GND the
address will change to 0x76

Arduino DPS310
SCL(A5) SCK

SDA(A4) SDI
5v OR 3.3v VIN

GND GND

• Connect board VIN to Arduino 5V if you are running a 5V board Arduino
(Uno, etc.). If your board is 3V, connect to that instead.

• Connect board GND to Arduino GND
• Connect board SCL to Arduino SCL
• Connect board SDA to Arduino SDA

The final results should resemble the illustration above, showing an Adafruit Metro
development board.

SPI Wiring
Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make
wiring identical on all microcontrollers, we'll begin with 'software' SPI. The
following pins should be used:

Arduino DPS310
D13 SCK
D12 SDO

D11 SDI
D10 CS

5v OR 3.3v VIN
GND GND

• Connect Vin to the power supply, 3V or 5V is fine. Use the same voltage that
the microcontroller logic is based off of

• Connect GND to common power/data ground
• Connect the SCK pin to Digital #13 but any pin can be used later
• Connect the SDO pin to Digital #12 but any pin can be used later
• Connect the SDI pin to Digital #11 but any pin can be used later
• Connect the CS pin Digital #10 but any pin can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if
you desire, or change the pins to others.

Library Installation
You can install the Adafruit DPS310 Library for Arduino using the Library Manager
in the Arduino IDE.

Click the Manage Libraries. menu item, search for Adafruit DPS310 and select
the Adafruit DPS310 library

Load Example
Open up File -> Examples -> Adafruit DPS310 -> dps310_simpletest and upload to
your Arduino wired up to the sensor.

Depending on whether you are using I2C or SPI, change the pin names and
comment or uncomment the following lines.

if (! dps.begin_I2C()) { // Can pass in I2C address here
 //if (! dps.begin_SPI(DPS310_CS)) { // If you want to use SPI

Once you upload the code and open the Serial Monitor (Tools->Serial Monitor)
at 115200 baud, you will see the current configuration printed, followed by the
pressure, and temperature measurements. You should see something similar to
this:

Carefully pressing on the small port on the top of the sensor will change the
pressure and temperature readings.

Example Code:
// This example shows how to read temperature/pressure

#include <Adafruit_DPS310.h>

Adafruit_DPS310 dps;

// Can also use SPI!

#define DPS310_CS 10

void setup() {

https://learn.adafruit.com/assets/87835

 Serial.begin(115200);

 while (!Serial) delay(10);

 Serial.println("DPS310");

 if (! dps.begin_I2C()) { // Can pass in I2C address here

 //if (! dps.begin_SPI(DPS310_CS)) { // If you want to use SPI

 Serial.println("Failed to find DPS");

 while (1) yield();

 }

 Serial.println("DPS OK!");

 dps.configurePressure(DPS310_64HZ, DPS310_64SAMPLES);

 dps.configureTemperature(DPS310_64HZ, DPS310_64SAMPLES);

}

void loop() {

 sensors_event_t temp_event, pressure_event;

 while (!dps.temperatureAvailable() || !dps.pressureAvailable()) {

 return; // wait until there's something to read

 }

 dps.getEvents(&temp_event, &pressure_event);

 Serial.print(F("Temperature = "));

 Serial.print(temp_event.temperature);

 Serial.println(" *C");

 Serial.print(F("Pressure = "));

 Serial.print(pressure_event.pressure);

 Serial.println(" hPa");

 Serial.println();

}

